COMP1521 24T1 H13A tutorial code

Here you'll find all the code I've written in the H13A tutorials, as well as some possibly useful information:

Week #9

print_diary.c

// Write a C program, print_diary.c, which prints the contents
// of the file $HOME/.diary to stdout

#include <complex.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>


int main(void) {
    // open the file
    char *home = getenv("HOME");
    printf("home = \"%s\"\n", home);

    char *diary_portion = "/.diary";
    size_t buffer_length = strlen(home) + strlen(diary_portion) + 1;
    char *buffer = malloc(buffer_length);
    if (buffer == NULL) {
        fprintf(stderr, "failed to allocate memory!\n");
        return 1;
    }

    snprintf(
        buffer, buffer_length,
        "%s%s", home, diary_portion
    );

    FILE *stream = fopen(buffer, "r");
    if (stream == NULL) {
        perror(buffer);
        return 1;
    }

    int byte;
    while ((byte = fgetc(stream)) != EOF) {
        putchar(byte);
    }

    fclose(stream);
    free(buffer);
}

chmod_if_public_write.c

#include <sys/types.h>
#include <sys/stat.h>
#include <stdio.h>

// ./chmod_if_public_write print_diary.c file code.txt

void chmod_if_public_write(char *pathname);

int main(int argc, char *argv[]) {
    for (int i = 1; i < argc; i++) {
        chmod_if_public_write(argv[i]);
    }
}

void chmod_if_public_write(char *pathname) {
    struct stat statbuf;
    if (stat(pathname, &statbuf) != 0) {
        perror(pathname);
        return;
    }

    if ((statbuf.st_mode & S_IWOTH) == 0) {
        printf("%s does not have public write bit set!\n", pathname);
        return;
    }

    mode_t new_mode = statbuf.st_mode & (~S_IWOTH);

    if (chmod(pathname, new_mode) != 0) {
        perror(pathname);
        return;
    } else {
        printf("Removed public write bit from %s\n", pathname);
        return;
    }
}

Week #8

first_line.c

// Write a C program, first_line.c, which is given one command-line argument,
// the name of a file, and which prints the first line of that file to stdout.
// If given an incorrect number of arguments, or if there was an error opening
// the file, it should print a suitable error message.

#include <stdio.h>

// ./first_line file.txt
//  argv[0] = "./first_line"
//  argv[1] = "file.txt"

int main(int argc, char *argv[]) {
    // check that we have the right number of arguments
    if (argc != 2) {
        fprintf(stderr, "Usage: ./first_line <file>\n");
        return 1;
    }

    char *pathname = argv[1];
    FILE *stream = fopen(pathname, "r");

    if (stream == NULL) {
        perror(pathname);
        return 1;
    }


    // write: fwrite, fputc, fputs, fprintf
    // read: fread, fgetc, fgets, fscanf

    int byte;

    while ((byte = fgetc(stream)) != EOF) {
        fputc(byte, stdout);

        if (byte == '\n') {
            break;
        }
        // putchar(byte);
    }

    // close the file for me please

    return 0;
}

Week #7

Here's the presentation

float_weird.c

#include <stdio.h>

int main(void) {
    float a = 0.1;
    float b = 0.2;
    float sum = a + b;

    printf("a = %.9g, b = %.9g and sum = %.9g\n", a, b, sum);
    printf("And sum == 0.3 is: %d\n", sum == 0.3);
}

get_bit_groups.c

#include <stdint.h>
#include <stdio.h>

typedef struct six_bit_groups {
    uint8_t middle_bits;
    uint8_t lower_bits;
} six_bit_groups_t;

/*
Example:

    01100010   10101101   11001100   10010011
                    ^^^   ^^^          ^^^^^^
                      middle            lower
                       = 46             = 19


*/


six_bit_groups_t get_bit_groups(uint32_t value) {
    uint32_t mask = (1 << 6) - 1;
    // uint32_t mask = 0b111111;
    // uint32_t mask = 0x3f;
    // uint32_t mask = 63;

    six_bit_groups_t result;
    result.lower_bits = value & mask;
    result.middle_bits = (value >> ((32 - 6) / 2)) & mask;
    return result;
}

Week #5

examples.txt

  uint16_t a = 0x5566, b = 0xAAAA, c = 0x0001;

   a) a | b
   b) a & b
   c) a ^ b
   d) a & ~b
   e) c << 6
   f) a >> 4
   g) a & (b << 1)
   h) b | c
   i) a & ~c

reverse_bits.c

#include <assert.h>
#include <stdio.h>
#include <stdint.h>


// Reverse a 32 bit value
uint32_t reverse_bits(uint32_t value) {
    uint32_t result = 0;

    for (int i = 0; i < 32; i++) {
        uint32_t mask = 1;

        // is bit `i` set to 1?
        if (((value >> i) & mask) == 1) {
            // bit `i` is set to 1

            // set the bit at the 'mirrored' `i` in result to a 1
            result |= (1u << (32 - i - 1));
        } else {
            // bit `i` is set to 0
            // don't do anything!
        }
    }

    return result;
}

int main(void) {
    assert(reverse_bits(0xFFFFFFFF) == 0xFFFFFFFF);
    assert(reverse_bits(0x00000000) == 0x00000000);
    assert(reverse_bits(0x1) == 0x80000000);
    assert(reverse_bits(0x2) == 0x40000000);
    assert(reverse_bits(0x01234567) == 0xE6A2C480);
    printf("All tests passed!\n");
    return 0;
}

Week #4

Here's the spreadsheet I used

topography.c

// A topographic map!
// This helpful tool will tell explorers how much they need to climb to
// reach various points of interest.
// Given an array of points, `my_points`, it can look up individual cells
// in the 2D map and print their height.

#include <stdio.h>

#define NUM_ROWS 5
#define NUM_COLS 5
#define N_POINTS 4

// 2D representation of a point, stored as a single struct
struct point2D {
    int row;
    int col;
} typedef point2D_t;

// 2D grid representing the height data for an area.
int topography_grid[NUM_ROWS][NUM_COLS] = {
    { 0, 1, 1, 2, 3 },
    { 1, 1, 2, 3, 4 },
    { 1, 2, 3, 5, 7 },
    { 3, 3, 4, 5, 6 },
    { 3, 4, 5, 6, 7 },
};

// Points of interest to print heights for, as a 1D array.
point2D_t my_points[N_POINTS] = {
    { 1, 2 },
    { 2, 3 },
    { 0, 0 },
    { 4, 4 },
};

int main(void) {
    for (int i = 0; i < N_POINTS; i++) {
        int row = my_points[i].row;
        int col = my_points[i].col;
        int height = topography_grid[row][col];

        printf("Height at %d,%d=%d\n", row, col, height);
    }

    return 0;
}

topography.s

# A topographic map!

# Constants
NUM_ROWS = 5
NUM_COLS = 5
N_POINTS = 4

SIZEOF_INT = 4
SIZEOF_POINT2D = 8
POINT2D_ROW_OFFSET = 0
POINT2D_COL_OFFSET = 4

	.data
# 2D grid representing the height data for an area.
topography_grid:
	.word	0, 1, 1, 2, 3
	.word	1, 1, 2, 3, 4
	.word	1, 2, 3, 5, 7
	.word	3, 3, 4, 5, 6
	.word	3, 4, 5, 6, 7

# Points of interest to print heights for, as a 1D array of point2D_t structs.
# Note the memory layout of this array: each element requires 8 bytes, not 4.
my_points:
	.word	1, 2
	.word	2, 3
	.word	0, 0
	.word	4, 4

height_str:
	.asciiz "Height at "


	.text
main:
	# Registers:
	#   - $t0: int i, the loop counter
	#   - $t1: row of the current point
	#   - $t2: col of the current point
	#   - $t3: height of the current point
	#   - $t4: temporary result for array indexing
	#   - $t5: temporary result for array indexing

					# Loop over all elements, and print their data
points_loop_init:			# for (int i = 0; i < N_POINTS; i++) {
	li	$t0, 0			# $t0 = 0

points_loop_cond:
	bge	$t0, N_POINTS, points_loop_end	# if (i >= N_POINTS)

	# We have i in $t0
	# We want row in $t1
	# We want col in $t2
	# We want height in $t3

	# int row = my_points[i].row;

	# 1) we want to do a load
	# 2) what's the address &my_points[i].row;

	# &my_points[i].row = (&my_points + i * 8) + 0
	la	$t4, my_points			# &my_points
	mul	$t5, $t0, SIZEOF_POINT2D	# i * 8
	add	$t4, $t4, $t5			# (&my_points + i * 8) + 0
						#  = &my_points[i].row
	addi	$t4, $t4, POINT2D_ROW_OFFSET

	lw	$t1, ($t4)			# row = my_points[i].row;

        # int col = my_points[i].col;

	# addi	$t4, $t4, POINT2D_COL_OFFSET	# (&my_points + i * 8) + 4
	# 					#  = &my_points[i].col

	# lw	$t2, ($t4)			# col = my_points[i].cols;

	lw	$t2, POINT2D_COL_OFFSET($t4)	# col = my_points[i].cols;

        # int height = topography_grid[row][col];

	# &topography_grid[row][col] = 
	#    topography_grid + sizeof(element) * (NUM_COLS * row + col)

	la	$t4, topography_grid
	mul	$t5, NUM_COLS, $t1
	add	$t5, $t5, $t2
	mul	$t5, $t5, SIZEOF_INT
	add	$t4, $t4, $t5

	lw	$t3, ($t4)

					# printf("Height at %d,%d=%d\n", row, col, height);

	li	$v0, 4			# $v0 = 4 (print string)
	la	$a0, height_str		# load address of height_str into $a0
	syscall				# print height_str

	li	$v0, 1			# $v0 = 1 (print int)
	move	$a0, $t1		# $a0 = row
	syscall				# print row

	li	$v0, 11			# $v0 = 11 (print ASCII character)
	li	$a0, ','		# $a0 = ','
	syscall				# print ','

	li	$v0, 1			# $v0 = 1 (print int)
	move	$a0, $t2		# $a0 = col
	syscall				# print col

	li	$v0, 11			# $v0 = 11 (print ASCII character)
	li	$a0, '='		# $a0 = '='
	syscall				# print '='

	li	$v0, 1			# $v0 = 1 (print int)
	move	$a0, $t3		# $a0 = height
	syscall				# print height

	li	$v0, 11			# $v0 = 11 (print ASCII character)
	li	$a0, '\n'		# $a0 = '\n'
	syscall				# print '\n'

points_loop_iter:
	addi	$t0, $t0, 1		# i++
	b	points_loop_cond	# branch to points_loop_cond

points_loop_end:

	jr	$ra			# return 0;

rec_max.c

#include <stdio.h>

// C function to find the largest element in an array, recursively.
// Returns the value of the largest element in the array.
//
// array:  Array to search
// length: Number of elements in the array
int rec_max(int array[], int length) {
    int first_element = array[0];
    if (length == 1) {
        // Handle the base-case of the recursion, at the end of the array.
        return first_element;
    } else {
        // Recurse on the rest of the array.
        // Finds the largest element after first_element in the array.
        int max_so_far = rec_max(&array[1], length - 1);

        // Compare this element with the largest element after it in the array.
        if (first_element > max_so_far) {
            max_so_far = first_element;
        }
        return max_so_far;
    }
}

int main(void) {
    int data[10] = {2, -3, 5, 4, 42, 2, 8, 4, 1, 9};

    printf("%d\n", rec_max(data, 10));

    return 0;
}

rec_max.s

########################################################################
# COMP1521 24T1 -- ...
#
#
# !!! IMPORTANT !!!
# Before starting work on the assignment, make sure you set your tab-width to 8!
# It is also suggested to indent with tabs only.
# Instructions to configure your text editor can be found here:
#   https://cgi.cse.unsw.edu.au/~cs1521/23T2/resources/mips-editors.html
# !!! IMPORTANT !!!
#
#
# This program was written by Xavier Cooney (z5417087)
# on 2024-03-07. awiojdoiawjd
#
# Version 1.0 (12-06-2023): Team COMP1521 <cs1521@cse.unsw.edu.au>
#
########################################################################

	.text
rec_max:
	# Args:
	#    - $a0: int array[]
	#    - $a1: int length
	#
	# Returns:
	#    - $v0: const char *
	#
	# Frame:    [...]
	# Uses:     [...]
	# Clobbers: [...]
	#
	# Locals:
	#   - ...
	#
	# Structure:
	#   current_player_str
	#   -> [prologue]
	#       -> body
	#   -> [epilogue]

	# int rec_max(int array[], int length) {

	# array: $t0
	# length: $t1
	# first_element: $s0
	# max_so_far: $t3

rec_max__prologue:
	# TODO
	push	$ra
	push	$s0

rec_max__body:
	move	$t0, $a0
	move	$t1, $a1

	# int first_element = array[0];
	lw	$s0, ($t0)

	bne	$t1, 1, rec_max__length_ne_1				# if (length == 1) {

	# return first_element;
	move	$v0, $s0
	b	rec_max__epilogue

rec_max__length_ne_1:							# } else {

	# int max_so_far = rec_max(&array[1], length - 1);
	addi	$a0, $t0, 4
	sub	$a1, $t1, 1
	jal	rec_max
	move	$t3, $v0

	ble	$s0, $t3, rec_max__ret_max_so_far	#   if (first_element > max_so_far) {

	# max_so_far = first_element;
	move	$t3, $s0

rec_max__ret_max_so_far:						#   }
	# return max_so_far;
	move	$v0, $t3

rec_max__epilogue:

	pop	$s0
	pop	$ra							# }

	jr	$ra
	# TODO



main:
main__prologue:
	push	$ra

main__body:
	la	$a0, test_data
	li	$a1, 10
	jal	rec_max				# result = rec_max(test_data, 10)

	move	$a0, $v0
	li	$v0, 1				# syscall 1: print_int
	syscall					# printf("%d", result);

	li	$v0, 11				# syscall 11: print_char
	li	$a0, '\n'
	syscall					# printf("%c", '\n');

	li	$v0, 0
main__epilogue:
	pop	$ra
	jr	$ra				# return 0;

	.data
test_data:
	.word 2, -3, 5, 4, 42, 2, 8, 4, 1, 9

Week #3

Here's the spreadsheet I used

read_array.c

// A simple program that will read 10 numbers into an array

#define N_SIZE 10

#include <stdio.h>

int main(void) {
    int i;
    int numbers[N_SIZE];

    i = 0;
    while (i < N_SIZE) {
        scanf("%d", &numbers[i]);
        // numbers[i] = read_int();

        i++;
    }

    for (int j = 0; j < N_SIZE; j++) {
        printf("%d\n", numbers[j]);
    }
}

read_array.s

	N_SIZE = 10

main:
	# i: $t0
	# j: $t0

	# move	$t0, $zero
	li	$t0, 0		# i = 0;

loop_i_cond:
	bge	$t0, N_SIZE, loop_i_end

	# 1) is this a load or a store?
	#    Store
	
	# &numbers[i] = sizeof(element) * i + numbers

	mul	$t1, $t0, 4	# i * 4
	la	$t2, numbers	# numbers
	add	$t1, $t1, $t2	# i * 4 + numbers = &numbers[i]

	# 2) what's the address we're storing at?
	#    Whatever is in $t1 at this
	#    point in the program.

	# 3) How big is the value we're storing?
	#    int => 4 bytes => word

	li	$v0, 5
	syscall
	#    The value we want to store
	#    is in $v0

	sw	$v0, ($t1)	# scanf("%d", &numbers[i]);


	addi	$t0, $t0, 1	# i++;

	b	loop_i_cond
loop_i_end:

	li	$t0, 0
loop_j_cond:
	bge	$t0, N_SIZE, loop_j_end

	# &numbers[i] = sizeof(element) * i + numbers

	mul	$t1, $t0, 4	# i * 4
	la	$t2, numbers	# numbers
	add	$t1, $t1, $t2	# i * 4 + numbers = &numbers[i]

	lw	$a0, ($t1)
	li	$v0, 1
	syscall

	li	$v0, 11
	li	$a0, ' '
	syscall

	addi	$t0, $t0, 1

	b	loop_j_cond
loop_j_end:

	li	$v0, 0
	jr	$ra


	.data
numbers:
	# .word 	0:10 # 0, 0, 0, ... 10 times
	.space	4*10

Week #2

hello.s

# MIPS assembly program that prints out "Hello, world!"

	# printf("Hello, world!\n");
main:
	# we want to put the number 4 in $v0
	li	$v0, 4			# $v0 = 4
	la	$a0, hello_world_str
	syscall

	li	$v0, 0
	jr	$ra			# return 0;



	.data
hello_world_str:
	.asciiz "Hello, world!\n"

square.c

// Prints the square of a number

#include <stdio.h>

int main(void) {
    int x;

    printf("Enter a number: ");
    scanf("%d", &x);

    int y = x * x;
    printf("%d", y);
    putchar('\n');

    // return 0;
}

square.s

	.text

main:
	# x: $t0
	# y: $t1

	# printf("Enter a number: ");
	li	$v0, 4
	la	$a0, enter_a_number_str
	syscall

	# scanf("%d", &x);
	li	$v0, 5
	syscall
	move	$t0, $v0	# $t0 = $v0

	# int y = x * x;
	mul	$t1, $t0, $t0

	# printf("%d", y);
	li	$v0, 1
	move	$a0, $t1
	syscall

	li	$v0, 11
	li	$a0, '\n'
	syscall

	li	$v0, 0
	jr	$ra		# return 0;


	.data
enter_a_number_str:
	.asciiz	"Enter a number: "

bounded_square.c

// Squares a number, unless its square is too big for a 32-bit integer.
// If it is too big, prints an error message instead.

#include <stdio.h>

#define SQUARE_MAX 46340

int main(void) {
    int x, y;

    printf("Enter a number: ");
    scanf("%d", &x);

    // if (x > SQUARE_MAX) {
    // if (!(x > SQUARE_MAX)) goto x_lte_square_max;
    if (x <= SQUARE_MAX) goto x_lte_square_max;

    printf("square too big for 32 bits\n");
    goto epilogue;

    // } else {
x_lte_square_max:
    y = x * x;
    printf("%d\n", y);

    // }
epilogue:
    return 0;
}

bounded_square.s

	SQUARE_MAX = 46340

	.text
main:
	# x: $t0
	# y: $t1

	# printf("Enter a number: ");
	li	$v0, 4
	la	$a0, enter_a_number_str
	syscall

	# scanf("%d", &x);
	li	$v0, 5
	syscall
	move	$t0, $v0	# $t0 = $v0

	ble	$t0, SQUARE_MAX, x_lte_square_max

	# printf("square too big for 32 bits\n");
	li	$v0, 4
	la	$a0, warning_str
	syscall

	# goto epilogue;
	b	epilogue

x_lte_square_max:
	# int y = x * x;
	mul	$t1, $t0, $t0

	# printf("%d", y);
	li	$v0, 1
	move	$a0, $t1
	syscall

	li	$v0, 11
	li	$a0, '\n'
	syscall

epilogue:
	li	$v0, 0
	jr	$ra		# return 0;


	.data
enter_a_number_str:
	.asciiz	"Enter a number: "
warning_str:
	.asciiz "square too big for 32 bits\n"

Week #1

factorial.c

#include <stdio.h>
#include <stdlib.h>

// Returns n!, that is
// factorial(n) = n * (n - 1) * (n - 2) * ... * 2 * 1

// 5 * 4 * 3 * 2 * 1 = (4 * 3 * 2 * 1) * 5
int factorial_iterative(int n) {
    // 
    int cumulative = 1;

    for (int counter = n; counter != 0; counter--) {
        cumulative *= counter;
    }

    // Ackermann

    // for (; n != 0; n--) {
    //     cumulative = n * cumulative;
    // }

    return cumulative;
}

// when n > 0, factorian(n) = factorial(n - 1) * n
// factorial(0) = 1
int factorial(int n) {
    if (n > 0) {
        return factorial(n - 1) * n;
    } else {
        return 1;
    }
}

int main(int argc, char *argv[]) {
    int input = atoi(argv[1]);

    printf("factorial(%d) = %d\n", input, factorial(input));
}

hi.c

// This code tries to say hi to the user...

#include <stdio.h>

int main(void) {
    char str[10];
    str[0] = 'H';
    str[1] = 'i';

    str[2] = '\0';

    printf("%s", str);
    return 0;
}